
1

Table of contents

Acknowledgements and Thanks ..4
Introduction..5

Why a Cookbook?...7
What to Expect from Reading This Book...8

How Minitest Works ... 11
Plugins .. 13
Reporters ... 16
Runnables .. 18
The Minitest Runner ... 23
Wrap-Up ... 28

Basic Recipes ... 29
Add Minitest to Your Ruby Project ... 31
Run Your Entire Test Suite ... 36
Run a Selection of Tests ... 39
Writing Tests.. 44
Writing Specs ... 55
Configure Pre-Test State .. 67
Comparing Things... 74
Having Fun with Minitest::Pride and Friends .. 80

Intermediate Recipes ... 84
Using Mocks, Stubs, and Other Test Doubles.. 86
Customizing Test Reports .. 95
Testing Mixin Behavior... 104
Sharing Code Between Tests ... 109
Continuous Testing with Guard .. 119
Writing Custom Assertions and Expectations 123
Developing Your Own Minitest Extension ... 129

Rails Recipes .. 138
Set Up and Run Minitest for Your Rails Project..................................... 141
Managing Test Data.. 146
Testing Active Record Models ... 157
Testing Controllers ... 169

2

Testing Helpers ... 180
Testing Background Processing .. 185
Testing Your Application End-to-End.. 199

Appendix A: Minitest::Test Reference .. 219
Hook Methods ... 219
Results Methods ... 219
Assertions and Refutations ... 219

Appendix B: Minitest::Spec Reference ... 223
DSL .. 223
Hooks.. 223
Expectations .. 223

3

Introduction

It's great to be a software developer today.

Give it a moment's thought. There's a whole universe of innovative
businesses and awesome projects that have shown us what's possible with
enough ingenuity and a little technical know-how. Hardware and hosting
services just keep getting cheaper and more consumer-friendly, and
deploying your latest and greatest app or pet project to millions of eager
users can be done in minutes and practically for free. And of course, we've
got an unbelievable set of tools at our disposal, that have been invented
to help us bring our ideas into reality - programming languages, databases,
application development frameworks, operating systems, and of course,
testing tools. Most of them totally free, all of them totally awesome.

It wasn't always this way. Twenty years ago, there were no flame wars
about whether to use Minitest or RSpec on the new project, and not just
because neither of them had been invented yet. Instead, developers would
be trying to decide whether or not to to invite that guy from QA to go
to lunch because he's always breaking their code and kind of a downer.
Back then, there were programmers and there were testers with major
differences in culture and status between the two roles.

5

Today though, the separation between development and testing has
largely disappeared - at least in the universe that most Ruby and Rails
programmers occupy. In many if not most cases now, the one writing the
code is also responsible for producing automated tests that cover the work
done. And while you're probably sick of hearing it, this is a good thing for
all kinds of reasons. Why?

• Tests demonstrate that your code actually works.
• The pattern of thinking needed to write tests for code is very close to

that needed to design it.
• Testing and developing in parallel tends to surface more bugs early in

the development process when fixing them is cheap and easy.
• Well-tested code tends to be better designed with reduced coupling

and greater cohesion.
• A good test suite acts as a detailed specification.
• Writing tests during development increases programmer engagement

and efficiency.
• A test suite with good coverage aids in maintenance, refactoring, and

upgrades with reduced risk of breakage and regression.
• It's faster to write code with tests than without.
• Having automated tests reduces or removes the need for manual

testing.

I'm not saying you need buy into every one of these statements. In fact, I've
probably only seen evidence for about half of them myself, and by that I
mean: "Works for me." But even if only one or two of these turns out to be
true, it would make time spent writing tests very worthwhile indeed.

Rubyists tend to take the benefits of testing as an article of faith, but
most don't spend quite enough time thinking about what makes tests
good or effective. I'd offer that the best tests will have a few important
characteristics in common:

• Clarity: The name of each test suggests what it's about at a glance.

6

• Purpose: The intent and meaning of the test is obvious and
unambiguous from the testing logic.

• Eloquence: The test logic is expressed through fluent use of the
language and the testing framework.

• Readability: Tests are written and formatted in a way that promotes
rapid discovery and comprehension.

• Efficiency: All other things being equal, automated tests should use
the minimum possible system resources.

That's not by any means a complete list, but let's take it as a good place
to start. We'll refer to these criteria as we look at different ways of using
Minitest and make choices about how we'll test. Because at the end of all
this, whether you're already 100% devoted to the test-first lifestyle or just
getting started, all of us are here to get better. If that sounds like a good
use of your time, read on.

Why a Cookbook?
Confession time: by all accounts, I'm a pretty mediocre cook. I love good
food, and like a lot of people, I've got a handful of things that I can prepare
to a passable level. (Except for my chili which is, I dare say, friggin'
awesome.) But aside from a few items, I'm not expecting to win awards any
time soon.

Hand me a recipe though, and it's a completely different story. Suddenly,
I'm chopping and slicing and stirring and frying like a champ. One minute,
I'm all confused and not sure which end of the knife to hold, and the next,
I'm Jamie Oliver. Julia Child. The Swedish Chef.

And that right there, my friend, is the miracle of the recipe. The instructions
help, but what a recipe gives us is the confidence we need to turn on
the stove. That's not the same as a tasty finished meal by any means, but
for most people, it's enough to help get them moving toward that goal.

7

Each of the recipes in The Minitest Cookbook addresses a specific question
or problem that developers commonly encounter when setting up and
writing their test suites - based on Minitest, of course. For the most part,
I've tried to keep the chapters short and to the point so that the book can
be used as a reference as you encounter questions or problems related to
testing your code.

Cooking also occurs within a context, though, that's determined by your
needs as a chef and as an eater of food. So there will be some cases
when you're looking for ideas for soups or side dishes, but other times you
might need to incorporate specific ingredients like potatoes or bananas
or that rack of lamb that's been taking up space in your freezer for the
past two months. That's why most cookbooks impose an organizational
structure on the recipes in their collection ‐ one that hopefully makes some
sense and respects the way that a real cook is likely to use it. So rather
than a completely random list of recipes or sorting them alphabetically,
it's normal to have sections organized by course, for example, or style of
cuisine.

The Minitest Cookbook is designed to be a guided tour through a broad
range of general testing and Minitest-specific topics. It's organized into
sections that progress through problems stretching from the very basic,
generally useful fundamentals through more advanced and situational
techniques. So you can start from the beginning and read through to the
end, or browse until you find a level that suits you.

What to Expect from Reading This Book
For the beginner with no experience in writing and running automated
tests, or at least no experience using Minitest, this book provides a gentle
but thorough introduction. Newbies will be guided through the setup of a
basic automated testing environment as well as the writing and running of
their first few tests. The book will also look at how to maintain and organize
your tests as they grow with your application.

8

Intermediate developers will benefit from detailed information on a whole
range of practical questions and problems they'll encounter when
attempting to grow test suites for their applications including:

• How can I get more useful and readable information out of my test
reports?

• What are mocks and stubs, and how should I use them in my code?
• How do I test a module that's included in lots of different classes?
• What techniques can I use to cut down on duplication and share code

among tests?

Rails developers won't be left out either. The book includes a whole section
of recipes that look at the specific issues involved in using Minitest with
Rails applications - from setting up your testing stack and managing your
test data to writing and running tests that exercise all the key parts of your
application. When you're done, you'll be able to develop with confidence
and know that you're testing your Rails apps the right way.

Unlike a lot of books on testing, this one won't dwell on the mechanics
of test-driven development. TDD has become so prevalent and popular
among the Ruby and Rails development community that you'd be hard
pressed to find a book on testing or development that doesn't take it
as a starting point for everything taught. But TDD is primarily about
development and only incidentally about testing, and it often treats the
tests that fall out of it as a by-product rather than as first-class citizens
of your project. That tends to result in test suites that are neglected after
they've served the purpose of driving out features.

While I do work in a way that maintains a very tight loop between
production code, I don't practice rigorous test-first TDD, and so this book
remains agnostic on the subject. In either case, it's tangential to the main
objective: writing more effective tests. To the extent that you're already
using TDD successfully in your own development practice, there's nothing
here that will get in the way of that. And if you're not already practicing TDD

9

and want to find out more about it, I'd encourage you to pick up one of the
following classics on the subject:

• Test Driven Development: By Example by Kent Beck
• Growing Object-Oriented Software, Guided by Tests by Steve Freeman

Source Code
Selections of the source code for the recipes in this book have been
provided to you in the zip archive delivered with your copy of the book. I'll
let you know which recipes have source and where you can find it for those
that do.

To make things more interesting, I've also set up a repository with the same
source on GitHub. If you find a problem with any of the source in the book
or in the archive, feel free to send a pull request. If you have a question
or a comment, open an issue. I'd like this to be a place for discussing and
improving the techniques taught here.

https://github.com/chriskottom/minitest_cookbook_source

10

https://github.com/chriskottom/minitest_cookbook_source

How Minitest Works

Minitest fans tend to use a lot of superlatives and ecstatic language when
talking about the framework in blog posts and tweets. You've probably
already heard things like this:

• "So easy, so fast, so readable."
• "This is just so simple and clean."
• "Seriously, figuring out minitest.stub == omg tests are so much

awesome."
• "Minitest is such a treasure - limited in scope but practically infinitely

extensible."
• "minitest and minitest-rails is awesome. check it out if you haven't yet.

lightweight, flexible testing code."

People get pretty worked up about Minitest, and with good reason. After
wrestling with testing for years, it's really a pleasure to find tools that don't
require so much... coercion, I suppose.

But even if Minitest is the greatest thing since peanut butter met jelly, it
would be great to find some words that describe the framework more
objectively and without cheerleading.

11

Let's start by looking at the code itself. Source isn't open to interpretation.
(Well, unless you happen to be a Ruby interpreter, of course. In that case,
keep on interpreting, and thanks for all you do.)

For a moment let's remove emotions from the equation and just take a
look at Minitest, the project. What sorts of words that mean something
apply when speaking about it?

• Fact: The entire framework weighs in at less than 1600 lines of code.
RSpec is almost 8 times as large. With a code base that size, the
source practically becomes its own documentation.

• Fact: Minitest has been singled out as a very readable project
because it's written in plain Ruby that developers of all experience
levels can dig into and understand.

• Fact: The project has remained small and simple because of
conscious decisions to keep it that way in spite of frequent requests
for expanded features.

• Fact: The source code showcases Ruby's power and elegance with
great uses of closures, metaprogramming, concurrent programming,
and others.

• Fact: Since the Minitest framework also happens to be tested with
Minitest, it includes some exceptional practical examples illustrating
good testing technique.

The goal for this section is to use a high-level reading of the Minitest source
code to give you a basic understanding of how the framework does what
it does. I'm hoping you'll add a few elegant bits of Ruby to your personal
snippet collection in the process.

Do you absolutely need that in order to be able to write better tests? Of
course not. So if that sounds a little deeper than you'd like to dive just now,
skip over it and dig right into the testing recipes in the sections that follow.
If you find later that you're curious about the plumbing that makes all this
possible, you can always return for a quick summary of the framework's
core concepts. For now though, I'll assume that you're sticking with me.

12

To really get comfortable with Minitest's internals, there are four basic
abstractions that you'll need to understand: plugins, reporters, runnables
and the Minitest runner. Once you're familiar with these, you'll know what
the framework is doing during every step of the testing cycle, and that in
turn will help you to use it more effectively and write your own extensions.

Plugins
Minitest owes much of its success so far to its stripped down approach to
testing. The framework and its API are economical, and so developers who
are just getting started with testing are able to achieve basic proficiency in
less time.

But Minitest also supports a simple plugin architecture and an active
ecosystem of extensions that can be used to modify the standard
framework's behavior to fit a whole range of needs and preferences. That
includes:

• Test runner behavior
• Syntax for defining tests
• The format and channel used to report test results
• Error and failure handling - e.g. firing up a debugger, console, etc.
• Supplemental tools for acceptance testing, mocking and stubbing, etc.
• Third-party integrations with CI services, parallel test runners, etc.

The framework includes Minitest::Pride which, in addition to adding a
touch of faaaaabulous to your test runs, serves as a simple example of how
to implement a plugin. We’ll use it for just that purpose here.

Minitest plugins are usually packaged as RubyGems which implement a
simple framework-defined contract that allows them to be loaded an
initialized by the framework. Specifically speaking, every plugin includes
a loader file that follows a standard naming convention - ex: minitest/

foo_plugin.rb where foo is the name of the plugin. Minitest dynamically
requires this file early in the test run, and most plugins will take that

13

opportunity to load additional supporting code and patch existing Minitest
classes as needed.

The loader file may also include an optional initialization hook for setting
up state and making modifications that will affect the rest of the test run.
If needed, the hook should be implemented as a method monkeypatched
directly into the Minitest module and defined according to the naming
standard - ex: Minitest.plugin_foo_init .

The initialization method must be part of the top-level namespace in order
to have the necessary access to module attribute accessors that are
exposed to plugins including:

• Backtrace filter - keeps backtraces readable
• Extensions list - register of known extension names
• Parallel executor - maintains thread pool for test execution
• Reporters - test output printing and formatting

Only plugins have access to these, and only at initialization time, so
extensions that manipulate or access any of these must be implemented
as plugins.

As an example, Minitest::Pride changes reporting behavior with its own
initialization method by swapping out the standard output stream with a
more colorful equivalent that wraps it.

def self.plugin_pride_init options # :nodoc:

if PrideIO.pride? then

klass = ENV["TERM"] =~ /^xterm|-256color$/ ? PrideLOL : PrideIO

io = klass.new options[:io]

self.reporter.reporters.grep(Minitest::Reporter).each do |rep|

rep.io = io if rep.io.tty?

end

end

end

14

A Minitest plugin may also include an optional hook for processing
command line arguments. Minitest requires that this also be implemented
as a class method patched into the top-level module with a name in the
form of Minitest.plugin_foo_options . It should accept a Ruby
OptionParser and a Hash of parsed options as arguments as shown in the
Minitest::Pride example.

def self.plugin_pride_options opts, _options # :nodoc:

opts.on "-p", "--pride", "Pride. Show your testing pride!" do

PrideIO.pride!

end

end

Oddly enough, many of the more popular Minitest extensions don’t use the
plugin architecture described here. As we just said, writing your extension
as a plugin imposes requirements on the developer in exchange for certain
limited rights.

• Automatic loading during the Minitest runner bootstrap process
without an explicit require by the developer

• Easy access to reporters and other Minitest module attributes
• The ability to accept and use command line arguments

While some extensions need access to these features, those that don't are
free to integrate with the framework in other ways. Take minitest-rails as
an example. It runs on top of Minitest and provides defaults, generators,
and syntactic sugar for Rails application testing. But it doesn't accept any
command line options and doesn't change the reporting format, so it isn't
implemented as a plugin. Likewise, if you find yourself writing an extension
that doesn't need what plugins offer, then it’s perfectly reasonable to
implement it without sticking to the plugin contract. Just make sure your
decision is based on a good understanding of Minitest internals and
especially the Minitest runner, which we'll be looking at more closely later
in this section.

15

Reporters
A test suite is a map for directing development effort to the parts of your
project that need it. From this perspective, the results reported by your test
suite act as its user interface and indicate the state of your code base.

Each test Minitest runs passes a result to a Reporter object which is
responsible for acting on it. Depending on the Reporter, it might:

• Display information to the console.
• Store the result for later processing.
• Increment counters or compile statistics.
• Send the result to another system - ex: a CI, a database, etc.

As an abstraction, a Reporter is just an object that implements four
methods that allow it to accept and operate on test results:

• #start - called before the first test is run

• #record - accept and process a single test result

• #report - deliver a detailed report after the test run

• #passed? - indicate passed/failed/errored/skipped tests

Minitest has a hierarchy of Reporters, each with its own responsibilities.

16

While it's not critical to commit the diagram to memory, it can be helpful
to understand the relationships and dependencies between the various
classes.

• AbstractReporter is the common parent for all other Reporters. It
has empty implementations of all four interface methods described
above and ensures thread safety for all other classes in the hierarchy.

• Reporter is a simple subclass of AbstractReporter that can be
instantiated.

• ProgressReporter implements a basic #record method that spits out
one character for each test result received - the familiar dot-notation.

• StatisticsReporter quietly maintains timing information for the
whole test run and increments counters for assertions, errors, tests,
failures, etc.

• SummaryReporter inherits from StatisticsReporter, adding console
output both before the first test and after the last one.

• CompositeReporter acts as a top-level proxy to a collection of other
Reporters and delegates any calls it receives to the four common
reporting event methods to them.

One more thing before we move on: before we said that Minitest exposes
the Reporter instance - a CompositeReporter instance, to be exact - to its
plugins during initialization as an attribute on the Minitest module. After
that, it resets the attribute reference to nil so that test classes only have
access to it via the local reference passed around by the Minitest runner.

What does that mean for you? Simply, any changes you want to make
to the Reporters that Minitest uses when running the tests, nasty
monkeypatches aside, will require developing a plugin that implements the
Minitest contract as described in Plugins. We'll look at how to go about that
later in the book.

17

Runnables
Every type of test that Minitest can run is a descendant of Runnable. That
includes the Test class, which inherits directly from Runnable, and the Spec
and Benchmark classes, which inherit from Test. If you've ever written a
test in Minitest, you're already familiar with that concept whether you know
it or not. Your own tests also fall into the same hierarchy since they also
extend Test, or Spec, depending one which way you lean.

class TpsReportTest < Minitest::Test

def setup

@tps_report = TpsReport.new

end

def test_must_have_cover_sheet

refute_nil @tps_report.cover_sheet

end

def test_should_be_finished

assert @tps_report.finished?

end

end

By writing and running even a simple example like this one, you can already
make several observations about how Minitest works.

• Every test case is a subclass of Minitest::Test. Assert-style tests usually
explicitly subclass Minitest::Test, while spec-style tests usually
subclass Minitest::Spec by way of a describe block (which is only
syntactic sugar for creating subclasses).

• A test is just a method on a test case. In assert-style testing, public
instance methods starting with the string "test_" are treated as tests,
while spec-style test cases generate those same methods with the
help of it blocks.

• Minitest is able to detect your test classes and identify the tests of
each without the need for a configuration file or other manifest.

18

• The result of each test that runs is reported in real time and also
aggregated with the results of other tests in the test run.

All of these features are brought to you by the classes of the Runnable
class hierarchy and some clever Ruby metaprogramming. Let's take a look
at some of the major moving parts.

Runnable.inherited
Runnable maintains a registry of all of its subclasses by implementing
the inherited callback method that runs when one Class inherits from
another.

def self.inherited klass # :nodoc:

self.runnables << klass

super

end

Every time the interpreter loads a Runnable subclass, the Class object of
that Runnable is appended to this list of Runnable descendants. Runnable
also provides a class-level accessor that returns the list of Runnable
subclasses in the Runnable.runnables method.

Runnable.runnable_methods
In order to run itself, every Runnable subclass must be able to produce a
list of its test methods. The conventions used for defining a test will vary
from one implementation to another, but by way of example:

• Test and Spec assume that all public instance methods matching
/^test_/ are runnable methods.

• Benchmarks do something similar, but instead search for public
instance methods matching /^bench_/ .

I've used the term "runnable method" throughout the book from time
to time whenever it seems important to highlight that aspect of the test.
Understand that this is just another way of saying "test".

19

Runnable.run and Runnable.run_one_method
We've established that Runnable knows about all its subclasses. Now, it
needs a way of running all the tests for a given test class and passing each
result to the Reporter for display, processing, collection, whatever.

The first part is handled by the Runnable.run class method. It selects and
filters the collection of methods returned by runnable_methods based the
command line arguments given and passes each remaining element as an
argument to the next link in the chain: Runnable.run_one_method .

##

Responsible for running all runnable methods in a given class,

each in its own instance. Each instance is passed to the

reporter to record.

def self.run reporter, options = {}

filter = options[:filter] || "/./"

filter = Regexp.new $1 if filter =~ %r%/(.*)/%

filtered_methods = self.runnable_methods.find_all { |m|

filter === m || filter === "#{self}##{m}"

}

exclude = options[:exclude]

exclude = Regexp.new $1 if exclude =~ %r%/(.*)/%

filtered_methods.delete_if { |m|

exclude === m || exclude === "#{self}##{m}"

}

return if filtered_methods.empty?

with_info_handler reporter do

filtered_methods.each do |method_name|

run_one_method self, method_name, reporter

end

end

end

20

The Runnable.run_one_method class method passes control to the
Minitest.run_one_method module method and hands the result back to the
Reporter instance that's been passed down the chain up until now:

def self.run_one_method klass, method_name, reporter

reporter.record Minitest.run_one_method(klass, method_name)

end

Here's where it gets interesting. Minitest.run_one_method is called with two
arguments: a Class and the name of a public instance method on that class.
It creates a new instance of the class, passing the name of of the instance
method as a parameter, and calls #run on the new instance.

def self.run_one_method klass, method_name # :nodoc:

result = klass.new(method_name).run

raise "#{klass}#run _must_ return self" unless klass === result

result

end

Minitest creates a clean instance of your test case class to run each test method.
This guarantees that local and instance variables from previously run tests
will not persist and affect the results of others and lets your tests can run
within as clean a context as possible.

Runnable#run
This instance method represents the bottom of the stack from the
framework's perspective. This is where the test class calls the runnable
method for which this instance of the Runnable class is responsible.

TEARDOWN_METHODS = %w[before_teardown teardown after_teardown] # :nodoc:

##

Runs a single test with setup/teardown hooks.

21

def run

with_info_handler do

time_it do

capture_exceptions do

before_setup; setup; after_setup

self.send self.name

end

TEARDOWN_METHODS.each do |hook|

capture_exceptions do

self.send hook

end

end

end

end

self # per contract

end

Minitest creates one new instance of the test class for each of its runnable
methods, and the #run method is responsible for dynamically executing
the method assigned to each instance.

In the case of the Minitest::Test#run implementation shown above, you
can also see some of the other framework-provided features in action:

• Setup and teardown logic (setup and teardown)

• before and after hooks (before_setup , before_teardown , after_setup ,
after_teardown)

• Test method exception handling (capture_exceptions block)

• Test timing (time_it block)

Result Query Methods
Each Runnable instance also acts as the result for its assigned test which
is why the #run method must always return self . If it didn't, the result
couldn't be passed to the Reporter.

22

Each Runnable implements a collection of instance methods that allow
Minitest, and specifically the Reporter, to easily understand how the test
turned out.

• #error? - returns true in case the test errors out

• #passed? - returns true if the test does not fail or error out

• #skipped? - returns true if the test is skipped

• #result_code - returns a single-character code denoting the final
result, e.g. . , E , or F

• #location - returns a string indicating the class, test, and line number
where a failure occurred (based on the stack trace of the failed
assertion)

The Minitest Runner
Think of the Minitest runner as a virtual component baked into Minitest.
There's no Runner class definition, but it's the context that brings together
all of the various concepts that we've discussed so far and forces them to
interact with one another during the test run.

The runner and Runnables fit together like the layers of an onion where
each layer represents a Ruby block or method. The inner layers represent
the Runnables where the tests are actually executed, and the outer layers
represent the runner - the code that gives the onion its shape. This section
will peel these back, one at a time, to see how it all fits together.

minitest/autorun.rb
If you've used Minitest before, you're already used to requiring this file in
your test helper. Now you get to find out why.

The Minitest runner is activated when you require minitest/autorun in
your code. It's responsible for loading the Ruby code needed to run
Minitest and kicking off the test run with the Minitest.autorun method.

23

begin

require "rubygems"

gem "minitest"

rescue Gem::LoadError

do nothing

end

require "minitest"

require "minitest/spec"

require "minitest/mock"

require "minitest/hell" if ENV["MT_HELL"]

Minitest.autorun

Minitest.autorun
Minitest uses an at_exit hook to call Minitest.run just before the
interpreter exits. Just what is an at_exit hook, you ask?

Kernel.at_exit is part of Ruby core. It's isn't commonly found in most
application code, but it's super handy if you happen to be coding a testing
framework or a daemonized server. It defines a block of code that should
be run after the rest of the program has completed and before Ruby shuts
down - sort of a like telling the interpreter, "One more thing..." This is
particularly useful in cases where the users of a library like Minitest need to
load their own code (tests, plugins, extensions, etc.) at runtime before the
framework swings into action while keeping the burden on the developer
minimal.

##

Registers Minitest to run at process exit

def self.autorun

at_exit {

next if $! and not ($!.kind_of? SystemExit and $!.success?)

exit_code = nil

24

at_exit {

@@after_run.reverse_each(&:call)

exit exit_code || false

}

exit_code = Minitest.run ARGV

} unless @@installed_at_exit

@@installed_at_exit = true

end

Minitest.run
Next, Minitest sets up the environment for the test run along with all the
necessary supporting objects. All the framework's major responsibilities
are handled right here as it:

• Parses the command line arguments.
• Loads and initializes all detected Minitest plugins.
• Instantiates and runs the reporters.
• Runs tests by passing control on to the next layer.
• Ensures that parallel worker threads are shut down gracefully.

At a high level, this is essentially a list of the framework's major
responsibilities during the test run.

def self.run args = []

self.load_plugins

options = process_args args

reporter = CompositeReporter.new

reporter << SummaryReporter.new(options[:io], options)

reporter << ProgressReporter.new(options[:io], options)

self.reporter = reporter # this makes it available to plugins

self.init_plugins options

self.reporter = nil # runnables shouldn't depend on the reporter, ever

25

self.parallel_executor.start if parallel_executor.respond_to?(:start)

reporter.start

begin

__run reporter, options

rescue Interrupt

warn "Interrupted. Exiting..."

end

self.parallel_executor.shutdown

reporter.report

reporter.passed?

end

Note how the :reporter attribute is initialized with a CompositeReporter
and then reset to nil just after the plugins are initialized. As we said
before in the Plugins and Reporters sections, this gives any loaded Minitest
plugins an opportunity to add, remove, or swap out Reporters. Keep that in
mind if you're developing an extension that touches reporting.

Minitest.__run
Did you know that Minitest can run your tests over multiple threads?
The runner is able to spin up a configurable number of worker threads
that can execute tests concurrently. This can help developers locate non-
threadsafe code and, in some cases, speed up test suite execution. While
this is a valuable feature, it's not suitable for every situation. In some cases,
developers may want to ensure that tests are executed one by one. For
now, it's enough to understand two basic principles:

1. Minitest lets developers specify, either globally or individually, test
cases that may be run in parallel or, alternately, those which must run
serially.

2. To keep from mistakenly running serial tests side-by-side with parallel
tests, serial tests must run and complete first.

26

This is the crux of what Minitest.__run does. It gets the collection of all
test cases from our old friend Runnable.runnables , splits them according
to this serial-parallel distinction, and runs each in turn.

##

Internal run method. Responsible for telling all Runnable

sub-classes to run.

#

NOTE: this method is redefined in parallel_each.rb, which is

loaded if a Runnable calls parallelize_me!.

def self.__run reporter, options

suites = Runnable.runnables.shuffle

parallel, serial = suites.partition { |s| s.test_order == :parallel }

If we run the parallel tests before the serial tests, the parallel tests

could run in parallel with the serial tests. This would be bad because

the serial tests won't lock around Reporter#record. Run the serial tests

first, so that after they complete, the parallel tests will lock when

recording results.

serial.map { |suite| suite.run reporter, options } +

parallel.map { |suite| suite.run reporter, options }

end

On to the Runnables!
From Minitest#__run , we move on to familiar territory. Each suite above
is one of our Runnable classes (tests and benchmarks and such), so calling
the run class method on one of them follows the same sequence of events
outlined in Runnables:

• Runnable.run gets the list of runnable_methods for its class and passes
that along with itself to...

• Runnable.run_one_method , which hands the shared Reporter the result
of the test that it receives from...

• Minitest.run_one_method , which instantiates the Runnable class
initialized with the name of the one method it should run and calls...

• Runnable#run on it to actually run the test method.

27

I said it before: Minitest is just like an onion, and like all onions, you can
peel it - just not without a few tears.

Wrap-Up
That's your basic introduction to Minitest. In this section, you've seen all the
major moving parts of the framework and how they work together to run
your tests in a way that's fast and elegant. With any luck, you've also seen
a bit of Ruby that you didn't know about before as well.

We're a heck of a long way from being finished learning about Minitest
internals. Minitest really is a testing framework for Do It Yourself-ers, and
what you've got so far is just enough knowledge get started hacking on it.
As we progress through some of the more advanced recipes in the later
sections of the book, what you've learned here will become more and more
valuable.

And of course, if you have questions that haven't been answered here,
crack open the code. The Minitest source is both small and approachable,
and so you don't need to wonder about how it works - you can find out for
yourself.

28

Basic Recipes

A journey of a thousand miles begins with a single step.

- Lao-tzu, The Way of Lao-tzu

The recipes in this section cover the most essential tasks that you'll
perform when working with Minitest - setting up your testing stack, writing
and organizing basic tests, and running them. In each area, we'll start with
simple examples and progress to techniques that are more advanced, so
even experienced developers might find a trick or two to add to their
routines.

To illustrate some of the concepts in this section's recipes, we'll be using
a basic implementation of FizzBuzz, an exercise that is often given as an
initial test to programming job applicants. The rules of FizzBuzz are simple:

1. Accept a number as input.
2. If the number is a multiple of 3, respond with "Fizz".
3. If the number is a multiple of 5, respond with "Buzz".
4. If the number is a multiple of both 3 and 5, respond with "FizzBuzz".
5. If none of these is the case, respond with the original number.

29

Plenty of blog posts and mailing list threads have already been devoted to
solving FizzBuzz. My implementation here is obvious, but it works.

class FizzBuzz

def convert(number)

if number % 15 == 0

"FizzBuzz"

elsif number % 5 == 0

"Buzz"

elsif number % 3 == 0

"Fizz"

else

number.to_s

end

end

end

Much of this section will focus on extending and adding tests to this simple
program. Code for all FizzBuzz examples throughout this section can be
found in the fizzbuzz/ directory of the source code archive or in the
GitHub repo.

30

https://github.com/chriskottom/minitest_cookbook_source/tree/master/fizzbuzz

Writing Tests

Problem
Congratulations, you've decided to use Minitest as your testing framework.
Your text editor is open, and you're ready to start.

Now what?

A lot of developers work through a handful of Ruby and Rails tutorials that
include testing but find themselves uncertain where to start when it comes
time to write tests for their own code. This one is different. Here we'll keep
the code simple and focus instead on laying down our first tests.

Solution
All the tests that we write follow the same basic four-phase structure.

1. Setup the inputs and data objects prior to running the test.
2. Exercise the logic under test.
3. Verify that the tested code produces the expected results.
4. Teardown or reset application state before running the next test.

As long as you use the framework as intended, it will ensure that your tests
run according to this process. This recipe shows you how to do that and
how to test a basic program starting from zero.

Let's begin by writing a first test for the simple FizzBuzz implementation
that was outlined at the beginning of this section. To get started, we only
need to create a FizzBuzzTest class in the test/ directory that inherits from
Minitest::Test:

require 'test_helper'

require 'fizz_buzz'

class FizzBuzzTest < Minitest::Test

end

44

It's not doing much of anything, but what we have here is, in fact, a full-
fledged test case. We could execute our test suite right now, and the
framework would run it.

At first glance, all we see is a normal class - no domain-specific language
(DSL) to learn, just plain Ruby. The only features are two require

statements - one that loads the test_helper.rb file that we created when
we set up the FizzBuzz project in Add Minitest to Your Ruby Project and
one that that refers to the FizzBuzz class itself, which is what we'll end up
testing.

Test classes inherit from Minitest::Test which is part of Minitest's hierarchy
of Runnables. The framework treats all Runnables as test cases when it
starts a test run.

Suites, Cases, and Tests

Testing terminology has been rendered almost meaninglessness
through years of misuse by well-meaning tech writers, but we'll aim to
maintain some level of consistency here. Let's agree on the following
definitions.

An assertion is a single verifiable statement about the expected state
or behavior of the system under test. Minitest provides two varieties of
these - assertions for assert-style testing and expectations for spec-
style testing. Throughout the book, we'll try to make it clear, at least
based on context, which type of assertion is intended.

A test refers to a collection of assertions that are executed as a unit
and which return a single result to the runner. In Minitest, a test
corresponds to a single runnable method - whether it's defined using
a standard method definition or a spec-style it block.

45

A test case is a collection of tests that all relate to a similar class,
unit, subsystem, system, etc. Test cases are usually defined in a single
file, but more precisely for Minitest, they're individual Runnable
subclasses. You might also see terms like "test file" and "test class"
used as synonyms.

A test suite refers to a collection of test cases that can be run as a set.
For our purposes here, this will mean all test cases for a given project.

In Minitest assert-style testing, every public instance method of a test class
that begins with the pattern test_ is treated as a test. So let's say that we
want to add four tests to the test case that map to the known behaviors
that our FizzBuzz class follows:

• Given input divisible by 15, respond with "FizzBuzz".
• Given input divisible by 5, respond with "Buzz".
• Given input divisible by 3, respond with "Fizz".
• Given any other input, respond with the original input.

We choose descriptive names for each and stub out empty methods that
will be filled in shortly.

class FizzBuzzTest < Minitest::Test

def test_converts_multiples_of_fifteen_to_fizzbuzz

end

def test_converts_multiples_of_five_to_buzz

end

def test_converts_multiples_of_three_to_fizz

end

def test_returns_same_number_for_other_numbers

end

end

46

Rails supports an alternate block syntax for defining tests that makes the
tests read a little more naturally.

class ArticleTest < ActiveSupport::TestCase

test "should not save article without title" do

article = Article.new

assert_not article.save

end

end

Rails provides this as syntactic sugar for defining tests. Under the covers
though, it's doing exactly the same thing that FizzBuzzTest is doing
explicitly - defining methods that follow the Minitest convention.

Running the test suite now with rake , you can see that Minitest runs these
four empty tests.

$ rake

Run options: --seed 36226

Running:

....

Finished in 0.001038s, 3852.3398 runs/s, 11557.0194 assertions/s.

4 runs, 12 assertions, 0 failures, 0 errors, 0 skips

As Minitest executes your tests, it outputs a text-based progress bar to the
terminal with each character signifying the result of a completed test. Each
test run by Minitest must finish in one of four possible states:

• Passed - The test didn't end in any other state (.).

• Failed - One of the test's assertions failed (F).

• Error - Running the test raised an uncaught error (E).

• Skipped - The test was explicitly skipped using the skip method (S).

47

All these test stubs pass simply because we haven't told Minitest to skip
them and because there's nothing in them to either fail or raise an error.
As tempting as it might be to declare victory and call it a day, let's push on
instead and see how we can add to these.

Minitest provides a set of basic assertions out of the box which allow us to
validate conditions and values produced by the code under test. Refutations
perform the opposite function and are used to check the inverse of an
assertion. Out of the box, there are 20 standard assertions and 14 standard
refutations, but in the course of regular testing, you'll probably find
yourself using fewer than half of them. The most commonly used
assertions and refutations are described in the table below, but there's a
complete reference in Appendix A: Minitest::Test Reference.

Assertion Refutation Example

assert refute
assert @admin.admin?, 'not an

administrator'

assert_empty refute_empty assert_empty @menu.items

assert_equal refute_equal
assert_equal 'admin',

@admin.username

assert_instance_of refute_instance_of assert_instance_of User, @admin

assert_includes refute_includes
assert_includes @menu.items,

'Chunky Bacon'

assert_match refute_match
assert_match @menu.items.first,

/Bacon/

assert_nil refute_nil assert_nil @admin.blocked_at

assert_raises
assert_raises(FormatError) {

@admin.email = 'admin' }

Every one of these, in addition to its own specific parameters, also takes
an optional message that's displayed in case the assertion fails. Minitest
generally does a decent job formatting informative messages, but you're

48

always free to add your own if you'd like your output to be more
expressive.

Let's apply this new information to FizzBuzz and fill in the tests with some
well-selected assertions. In each case, we'll check a selection of input values
against the expected results when passed to a FizzBuzz object.

class FizzBuzzTest < Minitest::Test

def test_converts_multiples_of_fifteen_to_fizzbuzz

fb = FizzBuzz.new

assert_equal 'FizzBuzz', fb.convert(15)

assert_equal 'FizzBuzz', fb.convert(45)

assert_equal 'FizzBuzz', fb.convert(90)

end

def test_converts_multiples_of_five_to_buzz

fb = FizzBuzz.new

assert_equal 'Buzz', fb.convert(5)

assert_equal 'Buzz', fb.convert(20)

assert_equal 'Buzz', fb.convert(100)

end

def test_converts_multiples_of_three_to_fizz

fb = FizzBuzz.new

assert_equal 'Fizz', fb.convert(3)

assert_equal 'Fizz', fb.convert(18)

assert_equal 'Fizz', fb.convert(42)

end

def test_returns_same_number_for_other_numbers

fb = FizzBuzz.new

assert_equal '1', fb.convert(1)

assert_equal '101', fb.convert(101)

assert_equal '2014', fb.convert(2014)

end

end

49

assert_equal is the best choice for what we want to do here because
it most closely aligns with the purpose of the test. Every test could, of
course, be written using only assert statements (e.g. assert 'FizzBuzz'

== fb.convert(15) , etc.) but that would obscure the intent.

Minitest expects you to pass parameters to assert_equal and most of its
other standard assertions with the expected value first followed by the
computed value. assert_equal will pass or fail exactly the same if the
parameters are swapped, but in case of a failure, the message displayed
by Minitest might not be as easily understandable. This same general
expected-first rule applies to other assertions and refutations where two
values are being compared, but go ahead and browse the Minitest::Test
Reference at the end of the book for a complete reference to all assertion
and refutation methods.

Any failing assertion, error, or skip statement stops a test immediately,
and any further assertions or logic will not be executed. That's why many
developers follow a strict one assertion per test policy - so that each
assertion has exactly one chance to succeed or fail. It's true that your tests
will be better and more maintainable when each test verifies a single
behavior of the system, but writing a single test for each of the assertions
above seems like overkill to me since they're all testing the same general
behavior. Also, what we consider to be a single behavior is going to vary
in complex systems depending on the level of abstraction our tests are
designed to exercise. In the end, you'll benefit from keeping the number of
assertions per test to a minimum, but don't be afraid to use more than one
assertion where it makes sense to do so.

The tests are working just fine now, but you'll notice that there's an awful
lot of code repeated between them. If you've been around the Ruby world,
or programming in general for any length of time, you're probably familiar
with the principle DRY (Don't Repeat Yourself) - the notion that each piece
of logic in a system should have a single location. DRY is an important
principle for building maintainable systems, and Minitest::Test includes two

50

lifecycle methods that we can use to cut down on repeated code: setup ,
which runs before each test, and teardown , which runs after each test.
The teardown method is used only rarely because of the way the Minitest
runner (and Rails fixtures, when in use) work, but we can use the setup

method to DRY up some of the shared logic and move it out of our tests so
that their real purpose can shine through.

class FizzBuzzTest < Minitest::Test

def setup

@fb = FizzBuzz.new

end

def test_converts_multiples_of_fifteen_to_fizzbuzz

assert_equal 'FizzBuzz', @fb.convert(15)

assert_equal 'FizzBuzz', @fb.convert(45)

assert_equal 'FizzBuzz', @fb.convert(90)

end

def test_converts_multiples_of_five_to_buzz

assert_equal 'Buzz', @fb.convert(5)

assert_equal 'Buzz', @fb.convert(20)

assert_equal 'Buzz', @fb.convert(100)

end

def test_converts_multiples_of_three_to_fizz

assert_equal 'Fizz', @fb.convert(3)

assert_equal 'Fizz', @fb.convert(18)

assert_equal 'Fizz', @fb.convert(42)

end

def test_returns_same_number_for_other_numbers

assert_equal '1', @fb.convert(1)

assert_equal '101', @fb.convert(101)

assert_equal '2014', @fb.convert(2014)

end

end

We can take this a step father by reducing the duplicated assertions in each
test and instead just calling assert_equal once within an enumerator loop:

51

class FizzBuzzTest < Minitest::Test

def setup

@fb = FizzBuzz.new

end

def test_converts_multiples_of_fifteen_to_fizzbuzz

[15, 45, 90].each do |i|

assert_equal 'FizzBuzz', @fb.convert(i)

end

end

def test_converts_multiples_of_five_to_buzz

[5, 20, 100].each do |i|

assert_equal 'Buzz', @fb.convert(i)

end

end

def test_converts_multiples_of_three_to_fizz

[3, 18, 42].each do |i|

assert_equal 'Fizz', @fb.convert(i)

end

end

def test_returns_same_number_for_other_numbers

[1, 101, 2014].each do |i|

assert_equal i.to_s, @fb.convert(i)

end

end

end

This code is certainly more DRY, but is it better? It's still pretty clear what
each test is meant to do, and there's no change in the testing logic. I would
argue that these tests, while perhaps more maintainable than the previous
ones, are less readable than they were, since the reader now needs to think
through the logic of the iterator block rather than just reading assertions.
Both characteristics are valuable, but with tests especially, we can expect
to read them many times more than we will change them. In general, it's
better to favor readability over DRY-ness when writing tests.

52

Finally, it's also possible to explicitly cause a test to be skipped or failed
using the skip and flunk methods, respectively. It's rare that you'll find a
real-world reason to use flunk , but skip can be useful in situations where
you want to write a test that specs out some future work that you're not
quite ready to code just yet. For example, FizzBuzzTest doesn't currently
check to see what happens when we pass it an unexpected input. In the
future, it might raise an ArgumentError, but for the moment, we haven't
defined the behavior we want. In this case, you could add the test as:

def test_raises_argument_error_for_bad_argument

skip 'not yet implemented'

assert_raises(ArgumentError) { @fb.convert(-1) }

assert_raises(ArgumentError) { @fb.convert(0) }

assert_raises(ArgumentError) { @fb.convert(1.0) }

assert_raises(ArgumentError) { @fb.convert('foo') }

assert_raises(ArgumentError) { @fb.convert(nil) }

end

The declarative syntax of skip is better than a code comment, and Minitest
flags the skipped test in my console output.

$ rake

Run options: --seed 13108

Running:

.S...

Finished in 0.001210s, 4133.1981 runs/s, 9919.6754 assertions/s.

5 runs, 12 assertions, 0 failures, 0 errors, 1 skips

You have skipped tests. Run with --verbose for details.

53

We'll use and extend what we've learned here in further recipes, but for
the time being, congratulate yourself on writing your first readable, well-
designed test case.

Takeaways
• Assert-style test cases are classes that inherit from Minitest::Test.
• Public instance methods of those classes whose names begin with

test_ are treated as tests by the runner.

• Minitest provides a small set of assertions out of the box, and of
those, about half are used frequently.

• Override the setup and teardown methods to include code that
should be executed before or, respectively, after each test is
executed.

• If you have to choose between readability and DRY-ness in your tests,
you should almost always choose readability.

Additional Resources
• Minitest Quick Reference

54

http://www.mattsears.com/articles/2011/12/10/minitest-quick-reference

